
21

2
Architecture

Overview

The greatest challenge to any thinker is stating
the problem in a way that will allow a solution.

—Bertrand Russell

We are living in a fast growing era of computing. Processor speed has
multiplied many times. Network bandwidth has increased at a rapid pace
every year. The memory capacity of disks and RAM has increased signifi-
cantly. Having a 1- or 2-gigabyte RAM on one’s desktop is no longer a dream.
The most positive feature of all this improvement is the cost of these compo-
nents—which has been spiraling downward over the years.

On the other front, computer networks have been expanding beyond propor-
tions. With the advent of the Internet, we are now dealing with networks of
more than a million fixed nodes. Added to this is the recent gadget revolu-
tion—fancy handheld devices such as cellular phones, pocket PCs, and
PDAs—which, through wireless or with dial-up connection, become dynamic
nodes. There are not many systems that were designed for such scalability
needs. Today, due to the availability of smaller and cheaper processors, mem-

PH028-Kumaran.book Page 21 Saturday, October 20, 2001 1:47 PM

Prentice Hall PTR
This is a sample chapter of Jini Technology: An Overview ISBN: 0-13-033385-9For the full text, visit http://www.phptr.com©2001 Pearson Education. All Rights Reserved.

22 Jini Technology: An Overview

ory, and network cards, almost all devices are becoming intelligent by adopt-
ing one of every component—processor, memory, and networking card. With
a few dollars, you can network-enable any device in your home: from a power
switch to a washing machine, TV set, VCR, audio equipment, or microwave
oven. The day is not far away when all your 911 calls may be handled in a
completely different way through your home network (see Figure 2–1). The
security camera on your home network could be activated by the emergency
support center from a remote location.

So the computing theme today is pervasive, ubiquitous, and dynamic distrib-
uted computing. Currently, there is no technology that can handle such a
requirement. Microsoft’s Millennium Edition, Sun’s Jini, and Hewlett-Pack-
ard’s e-Speak are envisioned to fill this solution space.

Figure 2–1 Future networking: looking beyond.

911 emergency call
monitoring center

Home network
(may be Jini, UPnP)

One of home’s
911 panic buttons

Networked
security camera

Don’t panic! Stay calm!
We are dispatching the
wildlife preservation
officials right away!

Don’t panic! Stay calm!
 We are dispatching

the wildlife
preservation officials

right away!

PH028-Kumaran.book Page 22 Saturday, October 20, 2001 1:47 PM

2 • Architecture Overview 23

In this chapter we will look into the details of Jini’s architecture—its vision,
assumptions, components, component details, and its solution for solving the
pervasive, ubiquitous, and dynamic distributed comupting problems.

Vision and Goals for Jini
As a dynamic distributed technology, Jini has the following vision and goals
(see Figure 2–2):

• To provide an infrastructure to connect anything, anytime, anywhere. The
vision of Jini is to provide an infrastructure that can help different net-
work users to discover, join, and participate in any network community
spontaneously.

• To provide an infrastructure to enable “network plug and work.” The goal of
Jini is to make any service joining the network available for other users
without installation and configuration hassles. The vision is 0% installa-
tion and 0% configuration. It should be as easy as plugging a telephone
into a telephone jack and using it—but it is not there yet. In fact, today’s
services are more operating system- and driver-centric. Even after down-
loading appropriate drivers and appropriate configuring, it is more a sce-
nario of “plug and pray” than of “plug and play.”

• To support a service-based architecture by abstracting the hardware/software dis-
tinction. Jini’s vision is to provide an architecture centered around a ser-
vice network instead of a computer network or device network. Jini’s
architecture simplifies the pervasive nature of computing by treating
everything as a service. This service can be provided through hardware,
software, or a combination of both. The advantage in abstracting this way
enables the infrastructure to be designed to accommodate a single type of
entity—a service. All protocols, such as joining or leaving the network,
can be defined with respect to this service type instead of individual
types. Such abstraction also helps in hiding the implementation of the ser-
vice provider from the service requester.

• To provide an architecture to handle partial failure. A distributed architecture is
not complete until it provides a mechanism for handling partial failures.
Jini’s vision is to provide an infrastructure and an associated programming
model that can handle partial failures and help in establishing a self-heal-
ing network of services.

PH028-Kumaran.book Page 23 Saturday, October 20, 2001 1:47 PM

24 Jini Technology: An Overview

System Assumptions
Jini’s architecture is based on the following environmental assumptions (see
Figure 2–3):

• The existence of a network with reasonable network latency. This is to ensure
that network latency does not affect the performance of a Jini system
because Jini relies heavily on Java’s mobile-code feature.

• Each Jini-enabled device has some memory and processing power. For devices
without processing power or memory, a proxy exists that contains both
processing power and memory. This is a strong assumption because all
network citizens are expected to have minimum computing capability,
memory, and ability to communicate.

• Each device should be equipped with a Java Virtual Machine (JVM). The avail-
ability of different JVM footprints makes it easier to Java-enable any device.

• Service components are implemented using Java. This is an assumption for soft-
ware components that would be joining a Jini community. All the service
components should live as Java objects to facilitate the service requester to

Figure 2–2 Jini’s vision and goals.

Connect anything,
anytime, anywhere

Network plug
and work Provide

service-based
architecture

Handle partial
failure

PH028-Kumaran.book Page 24 Saturday, October 20, 2001 1:47 PM

2 • Architecture Overview 25

download and run code dynamically. The point to note here is that Jini
does not expect a Java service implementation but a Java wrapper.

Figure 2–3 Jini’s assumptions.

Are the system assumptions hard to meet?
The only assumption, which is very strong, is the expectation of Jini-enabled
devices. These are devices with minimum computing capabilities, communicating
capabilities, and memory that should host a Java Virtual Machine (JVM). This is fine
for many devices, but it can cause problems for the numerous devices that are
currently processor-less and driver-controlled. But the provision of a proxy (any
device that has a processor, memory, and network capability willing to represent a
processor-less device) makes this assumption easier to meet. By this approach, you
can use a desktop computer to represent all your processor-less devices, such as
printers, scanners, electric switches, washing machines, and microwave ovens,
and also to control them.

Scanner

Fax

Pocket
organizer

Sun SPARC

Desktop

IBM RS/6000

Laser printer

Jini-enabled network assumptions:

● Existence of a network with reasonable network latency
● Device has some processor and memory
● Device is equipped with a JVM
● Service components are implemented using Java

Q u e s t i o n

PH028-Kumaran.book Page 25 Saturday, October 20, 2001 1:47 PM

26 Jini Technology: An Overview

System Architecture
The Jini architecture consists of the following components (see Figure 2–4):

• An infrastructure component, which enables building a federation of JVM

• A programming model component, which provides a set of interfaces for con-
structing reliable distributed services

• The services component, which forms the living entities and represents the
offered functionality within the federation

Although the system has three component parts, the boundary between the
parts is blurred. All three parts collaborate with each other, like a set of gears
within a machine, to achieve the overall system objectives. In fact, the infra-
structure and the services components are built using the programming
model component interfaces.

Jini architecture is a Java-based solution for dynamic distributed computing.
The Jini system extends the Java application environment from a single JVM
to a network of JVMs. From that perspective, Jini can be seen as a network
extension of the infrastructure, programming model, and services of Java
application environment (see Figure 2–5). Jini utilizes most of the core Java
technologies, such as RMI and JavaBeans, while adding additional functional-
ity to meet the distributed/network nature of the system.

Figure 2–4 Jini architecture components.

Programming model
component

Infrastructure
component

Services
component

Service
requests

PH028-Kumaran.book Page 26 Saturday, October 20, 2001 1:47 PM

2 • Architecture Overview 27

System Components
The Jini system comprises three components: (1) the infrastructure, (2) a pro-
gramming model, and (3) services (see Figure 2–6).

Infrastructure Component

The Infrastructure component is a core part of the architecture and its goal is
to provide mechanisms for devices, services, and users to discover, join, and
detach from the network. The Infrastructure component is composed of the
following subcomponents:

Figure 2–5 Java’s extension for Jini.

How tightly are Jini architecture and Java coupled?
Two-part answer:

• Jini is tightly coupled with Java as an application environment and a
programming model.

• Jini is not coupled with Java as a language.
This means that the service can be implemented in any language: C, C++, or
JPython. But to participate in the architecture, it should be subjected to a
compiler that can produce Java-compliant byte code. If not, it can be Java
wrapped/Java-tized using Java native interface (JNI). In this way, even a legacy
application can be Java-wrapped and can be made into a Jini service. To
summarize: Jini architecture is not Java language-centric but Java application-
centric.

● Discovery and join
● Distributed security
● Lookup

● Java VM
● RMI
● Java security

Core Java
functions

Extended
functions

(Jini-related)

● Leasing interface
● Transaction interface
● Distributed event

interface

● Java APIs
● JavaBeans model
● Event delegation

model

● JavaSpaces service
● Transaction manager

service

● JNDI
● EJB

Infrastructure
view

Programming
model view Services view

Q u e s t i o n

PH028-Kumaran.book Page 27 Saturday, October 20, 2001 1:47 PM

28 Jini Technology: An Overview

• Discovery and join protocol, which defines the way that services discover,
become part of, and advertise services to the other members of the federa-
tion.

• Remote method invocation (RMI), the distributed architecture environment
that enables service proxies to be downloaded.

• Distributed security model, which provides the concept of security within
the network. The distributed security model is an extension of Java’s secu-
rity model for distributed systems.

• Lookup service, which serves as a repository of services and helps network
members to find each other within the Jini community. Entries in the
repository are Java-compliant byte-code objects, which can be written in
Java or wrapped by Java.

Figure 2–6 Jini components’ detail.

Jini services

Lookup service

Discovery/join and security

JVM federation

S
er

vi
ce

s

Programmingmodel

In
fr

as
tr

uc
tu

re

JV
M

JV
M

JV
M

JV
M

T
r
a
n
s
a
c
t
i
o
n

L
e
a
s
i
n
g

E
v
e
n
t
 n
o
t
i
f
i
c
a
t
i
o
n

PH028-Kumaran.book Page 28 Saturday, October 20, 2001 1:47 PM

2 • Architecture Overview 29

Programming Model Component

The programming model is based on the Java application platform and its
ability to move code between nodes. The programming model defines a set of
interfaces, which taken together become the distributed extension of the Java
programming model to form the Jini programming model. The programming
model supports the following interfaces:

• Lease interface, which extends the Java programming model by adding
time to the notion of holding a reference. This approach provides a renew-
able, duration-based model for allocating and freeing the resource refer-
ences.

• Event notification interface, which extends the popular JavaBeans compo-
nent event delegation model. This model allows an event to be handled
by third-party objects and recognizes that the delivery of the distributed
notification may be delayed.

• Transaction interface, which allows the system to handle object-oriented
transaction handling. The interface does not define the actual mechanisms
involved in the transaction but provides rules for the objects involved in
the transaction. This approach provides freedom in choosing the preferred
mechanics and individual object implementation.

Services Component

The services component represents an important concept within Jini architec-
ture, and it denotes the entities that have come together to form the Jini com-
munity. The entities could be hardware, software, or a combination of
hardware and software. The services are identified as Java objects within the
system. Each service has an interface, which defines the operations that can be
requested of that service. The interface also reflects the service type. A service
is a composite entity and can be composed of other subservices. In fact, the
lookup service—one of the subcomponents of the core Jini infrastructure—is
implemented as a Jini service. Other constituents that form a part of Jini archi-
tecture and implemented as Jini services are:

• JavaSpaces service, which provides an optional distributed persistence
mechanism for the objects within a Jini community

• Transaction manager service, which provides distributed transactions for the
distributed objects

PH028-Kumaran.book Page 29 Saturday, October 20, 2001 1:47 PM

30 Jini Technology: An Overview

Interaction and Interdependence between Components

As stated above, although the system has three parts, each part has a specific
role in the overall architecture and they work in tandem to achieve the overall
system objective (see Figure 2–7). Both infrastructure and service components
rely heavily on the programming model. For example, the lookup service
makes use of leasing and event interfaces: JavaSpaces utilizes leasing, event,
and transaction interfaces. In short, any component within the Jini system has
to adopt the programming model recommended.

Theoretically, any service component is not forced to implement the program-
ming model interfaces, but that is required for interaction with the infrastruc-
ture. For example, whether or not a service implements a leased service when
it registers with a lookup service, it is leased. In scenarios where a service
requester just invokes the service provider’s method without sharing any
resources or maintaining session information, leasing can be optional. An
example of valid Jini service that does not use leasing and transaction is Jiro’s
log service. (Jiro technology provides tools and technology to reduce interop-
erability issues between storage systems, management software, and network
devices.) Thus, the combination of infrastructure, services, and a program-
ming model makes this architecture more reliable, dependable, and dynamic
and helps to overcome the known issues with distributed computing.

Figure 2–7 Component dependence: UML class diagram.

Infrastructure component
<<Component>>

Services component
<<Component>>

Lease interface
<<Interface>>

Event notification interface
<<Interface>>

Transaction interface
<<Interface>>

Programming model component
<<Component>>

definesdefinesdefines

uses uses

PH028-Kumaran.book Page 30 Saturday, October 20, 2001 1:47 PM

2 • Architecture Overview 31

System Service Architecture
Let us now look at the way that Jini components work together to provide a
dynamic distributed service network (see Figure 2–8).

Following is a walk-through of the steps that occur when a service provider
registers with a Jini community, and when a service requester requests service.

Service Provider Registering within Jini Community

1. When a service is initiated into the network, it drops a discovery packet
on the network, with a reference back to itself. The goal is to find one or
more lookup services.

2. Any lookup service within the Jini community listens on a well-known
port for the discovery packet and appropriately responds to the service
provider.

Figure 2–8 Technology at work.

Scanner

Fax

Sun SPARC

Desktop

Desktop system

Jini-enabled network
constituting Jini services

Service
requester
requesting a
service within
Jini community

Computer hosting
a lookup service

Step 1:
Drops a discovery
packet to find
lookup service

Step 2:
Discovers a
lookup service

Step 3:
Joins the community
by uploading its
service proxy onto
lookup service

Step 4:
Drops a
discovery
packet to find
lookup
service

Step 5:
Queries on the
lookup service
based on
service type

Step 6:
Downloads the
service proxy
from the lookup
service and
invokes the
service methods

Step 7:
Lease for the service proxy expires if not renegotiated

Pocket
organizer

Laser printer
Service provider
registering with
Jini community

PH028-Kumaran.book Page 31 Saturday, October 20, 2001 1:47 PM

32 Jini Technology: An Overview

3. When a lookup service within a network is discovered, the service joins
the network by uploading all its characteristics into the lookup service.
The service characteristics, its description, and its type are encapsulated
as a proxy (Java) object, which is uploaded into the lookup service. This
service is now available to any network citizen joining the community
using the discovery and join protocol.

Service Requester Requesting Service within Jini Community

4. Any client (service requester) needing a service joins the community
using the discovery protocol. In that process it locates one or more
lookup services within the community.

5. After locating a lookup service, the client looks for the service in the
lookup service based on its service type (Java interfaces).

6. Once the service is found, the client invokes the service, which involves
moving the proxy code on to the client. Now the client can perform any
operation on the service by calling its methods. This movement of the
code between the lookup service and the client gives the service pro-
vider greater freedom in the communication pattern and makes it possi-
ble to maintain the integrity of the proxy code as it is supplied by the
service provider.

7. Once the service proxy is downloaded, a service requester, depending
upon its requirements, creates, negotiates, or terminates its lease with
the service provider.

Summing Up
The Jini architecture consists of a core infrastructure component, a program-
ming model, and service components that collaborate to provide a dynamic,
distributed, self-healing network where services can discover and join sponta-
neously. It is a Java-based solution and can be considered as a network exten-
sion of the core Java application model. It is a simple, elegant solution for the
complex dynamic distributed computing problem.

With this introduction to the architecture, let us now move to Chapters 3 to 5
to delve into the architectural component details.

PH028-Kumaran.book Page 32 Saturday, October 20, 2001 1:47 PM

