
 Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved.
All registered trademarks are the property of their respective owners.

Building a Generic
Monitoring Framework

Using Javaspaces

S. ILANGO KUMARAN
WWW.ILANGOKUMARAN.COM

Enterprise Architect-and-
Project Manager

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Agenda

• Presentation Goal & Context
• Conventional System Monitoring Vs Distributed System

Monitoring
• A simple solution for this complex problem

– Overview
– Conceptual view
– Physical view

• Approach using JavaSpaces
– Why Javaspaces?
– Detail Design pre-view

• Questions

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Presentation Goal & Context

With the recent adoption of the
distributed technologies such as
CORBA, J2EE and Web Services the
system monitoring requirements have
become much more complex and
demanding.

This presentation provides an overview of
the thoughts and experimentation of an
monitoring solution using JavaSpaces.

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

What Is Different?

 Conventional Server System Monitoring Vs Distributed Server System
Monitoring

• Failure in a conventional
server based system is
“Total” – It is “ALL or
NONE” scenario.
– Mostly “system management”

tools such as Tivoli ARE used
to monitor the health and
performance of the system.

IDC

Monitoring Dashboard

Conventional Server
System

ALL or NONE

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

What Is Different?

 Conventional Server System Monitoring Vs Distributed Server System
Monitoring

• Failure in distributed server system are
“Partial” –

– Most distributed systems are multi-tiered
architecture composed of – load
balancers, web servers, application
servers, database servers, security servers,
transaction servers linked through
networked components

– Monitoring such systems poses enough
challenges

– Different parts of the same system can
fail without the knowledge of the other Monitoring Dashboard

Conventional Server
System

ALL or NONE

W
e

b
 S

e
rv

er

S
e

rv
le

t
E

n
g

in
e

A
p

p
 S

e
rv

er
s

w
/

B
u

si
n

e
ss

C

o
m

p
o

n
en

t

Load Balancer

DB

Servers

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

What Is Different?

 Conventional Server System Monitoring Vs Distributed Server System
Monitoring

• Add
– Cloning or Clustering

– Performance Monitoring

– Business SLA (Service Level
Agreement) monitoring

– System availability (24x7x365)
Monitoring

The problem is complex !
Monitoring Dashboard

Conventional Server
System

ALL or NONE

W
e

b
 S

e
rv

er

S
e

rv
le

t
E

n
g

in
e

A
p

p
 S

e
rv

er
s

w
/

B
u

si
n

e
ss

C

o
m

p
o

n
en

t

Load Balancer

DB

Servers

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

A Simple Solution to This Complex Problem

• Provide a “message board” where
each distributed component can
post its operation/ performance/
status information in a mutually
agreed format/template using a
“generic monitoring framework”

• Build an “application” which can
feed the message board and
provide a dashboard view

Monitoring Dashboard

Conventional Server
System

ALL or NONE

W
e

b
/S

e
rv

le
t

L
ay

e
r

B
u

si
n

e
ss

C

o
m

p
o

n
en

t
L

ay
e

r
R

e
so

u
rc

e

C
o

n
n

e
ct

o
r

Transaction/Sec
urity layer

DB

Servers

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

A Simple Solution to This Complex Problem
- Conceptual View

Monitoring Dashboard

System

ALL or NONE

W
e

b
 S

e
rv

er

S
e

rv
le

t
E

n
g

in
e

A
p

p
 S

e
rv

er
s

w
/

B
u

si
n

e
ss

C

o
m

p
o

n
en

t

Load Balancer

DB

Servers

Bulletin Board

Feeds

Application

Post
agreed
upon
monitori
ng
object/
template

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

A Simple Solution to This Complex Problem
- Logical/physical View

Monitoring Dashboard

Typical J2EE distributed
system

ALL or NONE

S
e

rv
le

ts

E
JB

s

R
e

so
u

rc
e

C
o

n
n

e
ct

o
rs

DB

Servers

JavaSpaces

Feeds

Dashboard
Application

Post
agreed
upon
monitori
ng
object/
template

W
eb

 S
e

rv
ic

e
s

G
at

ew
ay

Transaction,
Security

components

Generic Monitoring
Framework

LEGEND

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Javaspaces Approach –
Why Javaspaces?

• JavaSpaces possess the following inherent characteristics.
– Provide network accessible shared memories.

• Supports the bulletin board-like requirements.
– Supports Loosely coupled environment.

• Processes interact indirectly through the space and do not need to
know each other.

• Data senders and receivers are not required to know each other.
– Supports distributed data structure.

• The monitor-data structure can contain the various data needed for
complete application monitoring such as performance, time, business
transaction information. These data could be filled by a single
component/process or multiple component/processes based on the
probing strategies.

– Provides Simple but powerful APIs.
• Read(), write(), take().

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Javaspaces Approach –
Why Javaspaces?

• JavaSpaces possess the following inherent characteristics …
(continued)
– Provides secure transaction specific model using simple APIs

• Read(), write(), take()
– Support template based search/associative lookup

• Locate the objects based on the content rather than by memory location or
identifier

• If needed the same monitoring object can be looked up for gathering an SLA
for a specific business transaction or the performance clocking for the end-2-
end/resource-connector-2-end

• This feature perfectly fits the dashboard application needs
– Support distributed events and transaction as a part of the Jini application

model
• Can be used to report a failure during a process-flow to any registered client

– Since the dashboard application is operating outside the monitored-system
JVM, it does not impact the performance of the existing system

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Add requirement complexity to the simple solution
- Cloning/Clustering, Adding new system to the mix

Monitoring Dashboard

JavaSpaces

Feeds

Dashboard
Application

Post
agreed
upon
monitori
ng
object/
template

Typical J2EE distributed
system

ALL or NONE

S
e

rv
le

ts

E
JB

s

R
e

so
u

rc
e

C
o

n
n

e
ct

o
rs DB

Servers

W
eb

 S
er

vi
ce

s
G

at
ew

a
y

Transaction,
Security

components

Generic Monitoring Framework

LEGEND

Cloning/clustering

Add another
distributed
system to
the mix

Add another
distributed
system to
the mix

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Add requirement complexity to the simple solution
- Monitoring pattern to the mix – Performance,SLAs, Availability

Monitoring Dashboard

JavaSpaces

Feeds

Dashboard
Application

Post
agreed
upon
monitori
ng
object/
template

Typical J2EE distributed
system

ALL or NONE

S
e

rv
le

ts

E
JB

s

R
e

so
u

rc
e

C
o

n
n

e
ct

o
rs DB

Servers

W
eb

 S
er

vi
ce

s
G

at
ew

a
y

Transaction,
Security

components

Generic Monitoring Framework

LEGEND

Cloning/clustering

Add another
distributed
system to
the mix

Add another
distributed
system to
the mix

Use Associative lookup to
align the query
requirements/patterns while
feeding

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

GMF w/ Java Spaces Approach
Detail Design (Peek-View)

GenericMonitoringFramework

GenericMonitoring()

GenericMonitoringInterface

post(Object MonitorObject)()
startPM(String context)()
stopPM(String context)()

<<Interface>>

Implements Post() implements the
functionality to write
the given object info
onto the JavaSpaces

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

GMF w/Java Spaces Approach
Detail Design (Peek-View)

Sample Monitor Object
MonitorObject

BusinessIdentifier : String
ComponentIdentifier : String
WallclockStartTime : Date
WallclockEndTime : Date
FailureFlag : boolean
FailureCodeAndDesc : String

net.jini.core.entry.Entry
<<Interface>>

Implements

Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved. All registered trademarks are the property of their
respective owners.

Javaspaces/Generic Monitoring Framework
Approach –

Challenges Foreseen

• As the core functionality revolves around the generic
monitoring framework which encapsulates the
JavaSpaces APIs, it may be difficult to bring non-JVM
distributed application into the mix.

• Pre-package application can be another challenge

–Mitigation/Probable solution
•The Dashboard application can feed off certain information from
the available/re-formatted log file in addition to the Space entries

 Generic Monitoring Framework using JavaSpaces. © 2004 Ilango Kumaran. All rights reserved.
All registered trademarks are the property of their respective owners.

Questions
Building a Generic Monitoring
Framework using Javaspaces

S. ILANGO KUMARAN
WWW.ILANGOKUMARAN.COM
ILANGO@ILANGOKUMARAN.COM

Enterprise Architect-and-
Project Manager

