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Abstract - The UPnP(Universal Plug and Play) 
architecture offers pervasive peer-to-peer network 
connectivity of intelligent appliances in dynamic 
distributed computing environment. This paper shows that 
internal software integration of robot and robot service in 
ubiquitous computing environment are the same thing in 
nature. This paper also proposes to use the UPnP 
architecture as a unified framework not only for robot 
internal software integration, but also for ubiquitous robot 
control. This paper shows that the UPnP technology could 
provide a unified framework by describing the usefulness 
of the UPnP and by showing some experimental result 
regarding it.  
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1. Introduction 
 

For a long time, many researchers have been 
developing robot technologies in various fields: 
navigation, manipulation, vision, voice recognition, and 
even robot design. Recently the progress of technology 
developments has become more rapid than ever. However, 
it is yet hard to build a complex robot as a combination of 
those various technologies. Building a complex robot 
requires a lot of software components that are made by 
many researchers. It requires some ‘glue’ to connect the 
software components, too. Middleware can play the role of 
the ‘glue’ for software component integration. 

Though middleware is not popular in robot field, the 
middleware that have been used most is the CORBA 
(Common Object Request Broker Architecture)[1]. The 
projects that adopted the CORBA include the 
HRP(Humanoid Robotics Project)[2], the OROCOS(Open 
Robot Control Systems) project[3], and the 
Miro(Middleware for mobile robots) project[4]. Currently 
many robot researchers consider the CORBA as a possible 
candidate of their middleware when they try to integrate 
robot software.  

In the previous paper[5], we proposed to use the UPnP 
(Universal Plug and Play)[6] as a robot middleware, and 
examined its possibility. As can be seen in Fig. 1, the 
UPnP was developed for dynamic distributed environment 
while the CORBA was developed for distributed 
environment. Here the dynamic environment means that 
computing devices can join and leave the network 
dynamically. As internet was widely spread, the need to 

accommodate dynamic distributed computing 
environment was increasing, and new middlewares were 
devised. The UPnP architecture is one of them.  

The background idea of our approach is that a robot 
system itself will or should be dynamic distributed 
computing environment. Every component of a robot will 
become modular, and they will be configured dynamically 
in the future. Another point of view is that robots will be 
deployed at home or at office like a TV or a refrigerator in 
the future. And they will have to dynamically join and 
communicate with home or office networks as home and 
office are expected to be ubiquitous computing 
environment in the near future. Therefore, robot will need 
an appropriate middleware internally and externally for 
accommodating these dynamic distributed computing 
environments. The UPnP technology has good features for 
this environment. It shares the service oriented 
architecture with emerging Web Service technology[7], so 
it provides loosely coupled architecture for component 
connectivity. It also provides late binding and automatic 
discovery of services, which makes it appropriate for 
dynamic distributed computing environment as well as 
ubiquitous computing environment. 

 

 
Fig. 1. Computing problem space of middlewares[8]. 
 
Recently there has been released the concept of 

URC(Ubiquitous Robotic Companion), which is 
ubiquitous service robots that provide users with the 
services they need, anytime and anywhere in ubiquitous 
computing environments[9]. This is the same vision to 
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ours. In this paper, however, we propose to use the UPnP 
technology as a unified framework for robot integration 
and ubiquitous robot services. We show that the UPnP 
does not result in performance degradation by showing 
that the performance of the UPnP is similar to that of the 
TAO CORBA[10]. We also explain the reason why the 
UPnP architecture has good features and is appropriate for 
both of internal integration and external control of robot in 
ubiquitous computing environment. Lastly, this paper 
shows some experiments for it. 

 
2. UPnP 

 
2.1 Overview 

 
The UPnP(Universal Plug and Play) architecture offers 

pervasive peer-to-peer network connectivity of PCs, 
intelligent appliances, and wireless devices. The UPnP 
architecture is a distributed, open networking architecture 
that leverages TCP/IP and the Web to enable seamless 
proximity networking in addition to control and data 
transfer among networked devices[6]. It was originally 
developed by Microsoft, and now is being upgraded by 
UPnP forum. The UPnP forum defines and publishes 
UPnP device and service control protocols built upon open, 
Internet-based communication standards. The UPnP 
forum is supported by more than 800 companies. Since the 
major companies such as Microsoft, Intel, HP, Sony, and 
Samsung Electronics leads the forum as the steering 
committee members, the UPnP is getting power as a 
device network architecture at home and office. Actually 
the UPnP is also adopted as the base protocol of device 
discovery and control in the home networked device 
interoperability architecture of the DLNA(Digital Living 
Network Alliance)[11]. The DLNA is a consortium of 
CE(Consumer Electronics), mobile, and PC companies, 
which is formerly called DHWG (Digital Home Working 
Group). The DLNA is working on delivering an 
interoperability framework among digital appliances on 
the home network, such as digital TVs, digital set-top 
boxes, mobile phones, PDAs, and PCs. The DLNA is 
currently supported by more than 280 companies. 

 
2.2 Components 

 
The main components of the UPnP architecture are 

Devices, Services, and Control Points. Fig. 2 shows the 
basic relation among Device, Control Point, and Service.  

 

 
Fig. 2. Basic relation among Device, Service and 

Control Point. 
 
A UPnP Device is an entity that provides Services. A 

UPnP device is a container of services and nested devices. 

A UPnP Device can contain zero or more Services. A 
Service is a unit of functionality implemented by a Device. 
A Service exposes actions and models its state with state 
variables. A Control point is a service requester. A Control 
Point in a UPnP network is a controller capable of 
discovering and controlling other devices.  

 
2.3 Protocol Stack 

 
The UPnP architecture defines a base set of standards 

and conventions for describing devices and the services 
they provide. It is designed to bring easy-to-use, flexible, 
standards-based connectivity to ad-hoc or unmanaged 
networks. It provides the service oriented architecture, 
which is the base of emerging Web service technology as 
well. It uses standard protocols and web technologies such 
as TCP/IP, UDP, SSDP, SOAP, GENA, HTTP and XML. 
Fig. 3 shows the architecture of the protocol stack of the 
UPnP. 

 
UPnP Vendor Defined

UPnP Forum Working Committee Defined

UPnP Device Architecture Defined

HTTPMU
(Discovery)

HTTPU
(Discovery)

SOAP
(Control)

HTTP
(Description)

UDP TCP

SSDP GENA SSDP

IP

HTTP
GENA

(Events)

 
 

Fig. 3.  The UPnP protocol stack. 
 
Here the UPnP vendors, UPnP Forum Working 
Committees and the UPnP Device Architecture document 
define the highest layer protocols used to implement UPnP. 
Based on the device architecture, the working committees 
define information global to specific device types 

 
Table 1. Caption of a sample table. 

Steps Description 

Addressing Control point and device get addresses 

Discovery Control point finds interesting device 

Description Control point learns about device capabilities 

Control Control point invokes actions on device 

Eventing Control point listens to state changes of device 

Presentation Control point controls device or views device status 
using HTML UI 
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2.4 UPnP Networking 
 

The UPnP provides support for communication 
between Control Points and Devices. On top of the open, 
standard, Internet based protocols, the UPnP defines an 
architecture to handle the networking operation. The 
UPnP networking is accomplished through 6 steps: 
Addressing, Discovery, Description, Control, Eventing, 
and Presentation. Table 1 explains the 6 steps of the UPnP 
networking. 
 

3. Performance Comparison 
 

3.1 TAO CORBA 
 

CORBA is a middleware architecture of the Object 
Management Group’s(OMGs) standard for language and 
platform independent distributed computing. It supports 
object oriented programming in distributed computing 
environment[1]. CORBA is an acronym for Common 
Object Request Broker Architecture. As its name means, 
the object request broker(ORB) is the basic engine for this 
architecture. The ORB, known as the object bus, is 
responsible for locating server objects, and transporting 
method invocations and results to and from the server.  

TAO(The ACE ORB) is an open-source 
high-performance, real-time CORBA ORB end system. It 
was developed for distributed realtime and 
embedded(DRE) systems by the TAO project[10]. So, 
there was a case to apply TAO to robot development[4]. 
TAO is based on ACE[12] and extends CORBA by adding 
realtime I/O subsystem and high speed network interface. 
It allows applications to manage various resources such as 
communication and memory resources. It also provides a 
run-time scheduler to enforce QoS property. It adopts and 
provides many services of realtime OSes.  
 

3.2 Comparison of Response Time 
 

When the UPnP architecture is applied to software 
components, each software component can be mapped to a 
Control Point or a Device. Since a complex robot with 
many functionalities would have as many software 
components as the number of functionalities. As the 
number of Devices and Control Points increases, there 
could be a possibility of performance degradation since 
the UPnP was not devised for software integration. So, we 
implemented UPnP Devices and Control Points, and 
checked the response time. At the same time, we also 
implemented client and server components with the TAO 
CORBA, and compare the response time. In the 
experiment, we implemented dummy client(Control 
Point) and server(Device) components. And we increased 
the number of clients and server components from 10 to 80 
each, and measured the response time.  

In the first experiment, we located the devices and the 
control points on a single computer. Figure 4 shows the 
configuration of the experiment. The computer had a 
Pentium 4, 1.7GHz CPU and 256MB memory. The 
operating system was Redhat 9.0 with the kernel upgrade 
to version 2.4.26. The clients were programmed to send a 
dummy request every 50ms, and to measure and save the 

response time. With increasing the number of client(and  
server) from 10 to 80, we run the program for 20 min, and 
analyzed the result. Figure 5 gives the result.  

 

 
Fig. 4. The configuration of the single computer 

experiment. 
 

 
(a)                                       (b) 

Fig. 5. (a) Average response time and (b) standard 
deviation for single computer experiment. 

 
As can be seen in Fig. 5, the response time shows a little 

change along the increase of the number of devices. The 
average is almost 5ms for TAO CORBA and 2.4ms for 
UPnP when the number of devices is 80. The standard 
deviation is less than 2.5ms for TAO CORBA and 5.5ms 
for UPnP. In the single computer experiment, the UPnP 
showed better performance in average time and worse 
performance in standard deviation than the TAO CORBA.  

In the next experiment, we used two computers. We 
located the clients on one computer, and the server 
components on the other computer. The client computer 
had a Pentium 4, 2.8GHz CPU and 512MB memory. The 
operating system was Redhat 9.0 with the kernel upgrade 
to version 2.4.26. Figure 6 shows the configuration of the 
experiment. 

  

 
Fig. 6. The configuration of the two computer 

experiment. 
 

We used the same client and server components as before, 
and measured the response time as we increased the 
number of client and server components. Figure 7 shows 
the result.  
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(a)                                       (b) 

Fig. 7. (a) Average response time and (b) standard 
deviation for single computer experiment. 

 
In this case, the average is almost 4.5ms for TAO CORBA 
and 4.7ms for UPnP when the number of devices is 80. 
The standard deviation is less than 2.5ms for TAO 
CORBA and 3ms for UPnP. The graph shows that the 
performance of the UPnP is similar to that of the TAO 
CORBA though it shows a little bit more standard 
deviation. From the both of experiments, we could 
conclude that there is no severe performance degradation 
when the UPnP is used for software components, and that 
the performance of UPnP is similar to that of TAO 
CORBA.  
 

4. UPnP and Ubiquitous Robot Control 
 

Though the UPnP showed similar performance to the 
TAO CORBA, it has better features for dynamic 
distributed computing environment than CORBA. First of 
all, the UPnP has automatic discovery and configuration 
mechanism. In the UPnP community, it is called 
zero-configuration. The Addressing, Discovery, and 
Description of UPnP networking steps are related with 
automatic discovery and configuration of Control Points 
and Devices. It is the strong point that makes the UPnP to 
be appropriate for dynamic computing environment. 
Every time devices are connected to the network, there is 
no need for users to configure the devices. Since 
ubiquitous computing environments will be mostly based 
on ad hoc networks that are spontaneous, completely 
distributed, and dynamic, the UPnP is quite appropriate for 
the environment.  

In the view point of robots, automatic discovery and 
configuration makes it easy to integrate software 
components internally. The software components can 
participate in integration dynamically. If there is a task 
planner or an intelligence component, it can configure 
other software components dynamically according to the 
goal of services it wants to provide. This point would be 
essential for implementation of intelligence. The 
intelligence component can reside even outside of a robot 
since software components can cooperate with each other 
regardless of the location. In this case, the network 
connection could not be permanent, and the robot should 
work on the ad hoc network. It makes the UPnP 
technology to be more attractive since it was designed for 
dynamic computing environment.  

In the recent concept of the URC(Ubiquitous Robotic 
Companion), some software components are located 
outside of robots. In this way, the price of robot can go 
down, and various services can be provided. The outside 

software components can be an intelligence component or 
service components that provide desired services by 
cooperating with the software components inside the robot. 
By the way, this URC configuration of robots is what the 
UPnP is quite appropriate for.  

Software components can be located in any of internal 
environment of robot or ubiquitous computing 
environment, and they can be configured dynamically. 
Then, internal software integration of robot and software 
configuration for services in the URC concept are the same 
thing. Thus, it would be better to have a unified framework 
for it. The UPnP architecture is a good candidate for it. 
Figure 8 shows an example of the configuration with the 
UPnP technology. Each small block represents a software 
component, and it is mapped to a UPnP Control Point or a 
Device or a combination of them. The ‘internal robot 
environment’ means inside of the robot. The figure shows 
the software integration can be done regardless of the 
location of software components. The integration 
framework is unified. In this way, internal software 
components of robot can be controlled directly from 
outside, too.  

 
Fig. 8. An example configuration with the UPnP 

technology in ubiquitous computing 
environment. 

 
Another good feature of the UPnP is that it has 

‘Presentation’ step. Each UPnP Device can have a web 
page, and can use it freely. It can help to build user 
interface. If we develop a software component so that it 
has a web page with user interface for its services, then 
users can access the software component through the 
internet, and control it. In other way, the web page can be 
used to check the status of the component. Users or other 
high level software component can check the healthiness 
of the component through the web page. Though the UPnP 
limits the operation within a network segment, the 
‘Presentation’ mechanism provides a way to circumvent 
the limitation. The figure 8 shows this concept with 
‘remote user interface component.’ 
 

5. Experiments 
 

In the first experiment, we built a Lego robot with a 
camera on it. The goal of robot control is to make the robot 
to follow a marker. In more detail, we wanted to make the 
robot to maintain the direction and the distance to the 
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marker within some ranges. For instance, if the marker 
goes out of the camera view to the right, the robot should 
turn right to the marker, and vice versa. If the marker 
moves far away from the robot, the robot should move 
toward the marker so that it can maintain the size of the 
marker in the camera image in a certain range. If the 
marker moves toward the robot, the robot should move 
away from the marker. We used Lego RCX controller to 
build the robot. We assigned a computer to control the 
motion of the Lego robot. We called it ‘Main computer.’ 
The Lego RCX could be controlled using IR(Infra red) 
signal. The Lego tower was USB-to-IR signal converter, 
and it was connected to the computer. We mounted a 1394 
camera on the robot. We also assigned another computer 
to the camera for image processing. We called it ‘Vision 
computer.’ Firstly, we implemented 3 software 
components: Motor control, Vision tracker, and Planner. 
The Motor control component controlled the motion of the 
Lego robot. The Vision tracker tracked the marker, and 
generated the direction that the robot had to move to. The 
Planner issued start and stop commands. Though its name 
was planner, it did not make any plan, rather its role was 
user interface. Later, we added Video renderer and UPnP 
AV components to see the camera view on the computer. 
Figure 9 shows the architecture of the system with the 
software components. Each component was developed as 
a UPnP component. For instance, the planner was a 
Control Point while the vision tracker and the motor 
control were combinations of Control Point and UPnP 
Device. 

 
Fig. 9. The architecture of the Lego robot control 

system. 
 
The robot worked quite well, and followed the marker. 

Though the camera was attached to the Lego robot 
physically, they could be separated. The software 
components were separated, too. But, they cooperated 
with each other very well though they were located on 
different computer. While implementing the software 
components, we felt that the integration was so simple and 
easy. The only thing we had to do was to wrap our 
programs with UPnP protocol stack and to place them on 
the computers. The UPnP wrapping was composed of 
defining services and combining action code with UPnP 
protocol code. It was easy, too.  

In the second experiment, we developed a ‘Robot 
Hello’ program with UPnP components, and checked the 

usefulness of UPnP and possibility of ubiquitous robot 
control. The testbed robot consisted of 3 single board 
computers(SBC) in hardware, and they were connected 
each other with networks. The SBC’s were based on Linux 
and adopted a realtime OS such as RTAI[13]. Figure 10 
shows the appearance of the robot.  

 

 
Fig. 10. The appearance of the testbed robot. 

 
The goal of the Robot Hello program was to let a robot 

show a greeting expression to a man in front of it. The 
robot was supposed to move forward a little, to make a 
bow, to say hello, and to display ‘Hello’ characters on the 
display. The Robot Hello program was designed to have 5 
software components. Each component was programmed 
to be UPnP Device or Control Point with our UPnP based 
robot middleware SDK. Figure 11 shows the relation of 
the UPnP components for Robot Hello program. 
 

 
Fig. 11. The relation of UPnP components for the Robot 

Hello program. 
 
The figure shows 6 components including the task 
manager component, and the relation between them. The 
‘Robot Head’, ‘Robot Motion’, ‘Robot Voice’, ‘Robot 
GTK Hello’ components were programmed into UPnP 
Devices. The ‘Robot Head’ component controlled the 
motion of robot head. The ‘Robot Motion’ component 
controlled the movement of robot. The ‘Robot Voice’ 
component generated ‘Hello’ sound using voice synthesis 
when it received a command. The ‘Robot GTK Hello’ 
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component was supposed to display ‘Hello’ characters on 
the display of the robot body. The ‘Robot Greeting’ 
component was transformed into the combination of UPnP 
Device and Control Point. We let the ‘Robot Greeting’ 
component include 4 Control Points inside it. The ‘Robot 
Greeting’ component acted as UPnP Device to a task 
manager. When we tested the program, we could find that 
the new UPnP-based Robot Hello components worked 
together without any problem. In addition, we tested the 
situation of dynamic computing environment by tearing 
down and reloading software components in realtime. In 
this experiment, dynamic tearing down and reloading of 
UPnP components did not cause any problem and showed 
smooth work. For example, if we unloaded the ‘Robot 
Head’ component, the program worked well without it. If 
we reloaded it again, the program detected it and worked 
well including head motion. Figure 12 shows two shots of 
the experiment. Figure 12(a) shows the installed the UPnP 
components. Figure 12(b) shows the robot was displaying 
the ‘Hello’ word on the front panel. 
 

   
(a)                                          (b) 

Fig. 12. Experimentation with the testbed robot, (a) user 
interface that shows the S/W components in the 
robot (b) the robot displaying ‘Hello’ on its 
display panel. 

 
In the experiment, we located the ‘Task Manager’ 
component outside the robot. We used another computer 
to run it, and let the computer communicate with the robot 
by wireless LAN. It did not pose any problem. We used a 
user interface program as the ‘Task Manager’. Figure 
12(b) is the screen shot of the user interface. With the user 
interface program, we could not only control the robot, but 
access other services of internal robot components such as 
‘Robot Head’ and ‘Robot Motion’ as can be noticed in Fig. 
12(a). So, we could see the possibility of UPnP as a unified 
framework for both of robot internal environment and 
ubiquitous computing environment with robots.  
 

6. Conclusion 
 

Ubiquitous computing environment will be mostly 
based on ad hoc networks that are spontaneous, 
completely distributed, and dynamic. Robots will be 
deployed like a TV or a refrigerator at home or at office in 
the ubiquitous computing environment. In the recent 
concept of the URC(Ubiquitous Robotic Companion), 
some software components are located outside of robots. 
Robots are supposed to cooperate with outside 
components to provide desired services.  

By the way, in our view, internal computing 
environment of robots should be distributed and dynamic 
in order to achieve intelligent behavior. A robot will need 

to configure software components dynamically according 
to its goal. So, we need appropriate middleware and 
framework for efficient internal and external integration of 
software components of robots.  

In this paper, we have showed that the UPnP 
technology could provide a unified framework for it. The 
UPnP defines an architecture for pervasive peer-to-peer 
network connectivity of intelligent appliances. While the 
UPnP showed similar performance as the CORBA, it had 
good features such as automatic discovery and 
configuration for dynamic distributed computing 
environment. Using the UPnP technology, we could 
access and control software components uniformly 
regardless of location. It was good for handling dynamic 
change of software configuration, too. While the UPnP is 
getting more power as a good candidate for middleware of 
home and office network, the UPnP is a good candidate for 
a unified framework for future robots, too.   
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