
The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)

UPnP Robot Middleware for Ubiquitous Robot Control

Sang Chul Ahn, Ki-Woong Lim, Jung-Woo Lee, Heedong Ko, Yong-Moo Kwon and Hyoung-Gon Kim
Imaging Media Research Center, KIST

39-1 Hawolgok-dong, Sungbuk-gu, 136-791 Seoul, Korea
{asc, lkw, ricow, ko, ymk, hgk}@imrc.kist.re.kr

Abstract - The UPnP(Universal Plug and Play)
architecture offers pervasive peer-to-peer network
connectivity of intelligent appliances in dynamic
distributed computing environment. This paper shows that
internal software integration of robot and robot service in
ubiquitous computing environment are the same thing in
nature. This paper also proposes to use the UPnP
architecture as a unified framework not only for robot
internal software integration, but also for ubiquitous robot
control. This paper shows that the UPnP technology could
provide a unified framework by describing the usefulness
of the UPnP and by showing some experimental result
regarding it.

Keywords - UPnP, Robot, Middleware, Ubiquitous,
Integration.

1. Introduction

For a long time, many researchers have been
developing robot technologies in various fields:
navigation, manipulation, vision, voice recognition, and
even robot design. Recently the progress of technology
developments has become more rapid than ever. However,
it is yet hard to build a complex robot as a combination of
those various technologies. Building a complex robot
requires a lot of software components that are made by
many researchers. It requires some ‘glue’ to connect the
software components, too. Middleware can play the role of
the ‘glue’ for software component integration.

Though middleware is not popular in robot field, the
middleware that have been used most is the CORBA
(Common Object Request Broker Architecture)[1]. The
projects that adopted the CORBA include the
HRP(Humanoid Robotics Project)[2], the OROCOS(Open
Robot Control Systems) project[3], and the
Miro(Middleware for mobile robots) project[4]. Currently
many robot researchers consider the CORBA as a possible
candidate of their middleware when they try to integrate
robot software.

In the previous paper[5], we proposed to use the UPnP
(Universal Plug and Play)[6] as a robot middleware, and
examined its possibility. As can be seen in Fig. 1, the
UPnP was developed for dynamic distributed environment
while the CORBA was developed for distributed
environment. Here the dynamic environment means that
computing devices can join and leave the network
dynamically. As internet was widely spread, the need to

accommodate dynamic distributed computing
environment was increasing, and new middlewares were
devised. The UPnP architecture is one of them.

The background idea of our approach is that a robot
system itself will or should be dynamic distributed
computing environment. Every component of a robot will
become modular, and they will be configured dynamically
in the future. Another point of view is that robots will be
deployed at home or at office like a TV or a refrigerator in
the future. And they will have to dynamically join and
communicate with home or office networks as home and
office are expected to be ubiquitous computing
environment in the near future. Therefore, robot will need
an appropriate middleware internally and externally for
accommodating these dynamic distributed computing
environments. The UPnP technology has good features for
this environment. It shares the service oriented
architecture with emerging Web Service technology[7], so
it provides loosely coupled architecture for component
connectivity. It also provides late binding and automatic
discovery of services, which makes it appropriate for
dynamic distributed computing environment as well as
ubiquitous computing environment.

Fig. 1. Computing problem space of middlewares[8].

Recently there has been released the concept of

URC(Ubiquitous Robotic Companion), which is
ubiquitous service robots that provide users with the
services they need, anytime and anywhere in ubiquitous
computing environments[9]. This is the same vision to

53

The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)

ours. In this paper, however, we propose to use the UPnP
technology as a unified framework for robot integration
and ubiquitous robot services. We show that the UPnP
does not result in performance degradation by showing
that the performance of the UPnP is similar to that of the
TAO CORBA[10]. We also explain the reason why the
UPnP architecture has good features and is appropriate for
both of internal integration and external control of robot in
ubiquitous computing environment. Lastly, this paper
shows some experiments for it.

2. UPnP

2.1 Overview

The UPnP(Universal Plug and Play) architecture offers

pervasive peer-to-peer network connectivity of PCs,
intelligent appliances, and wireless devices. The UPnP
architecture is a distributed, open networking architecture
that leverages TCP/IP and the Web to enable seamless
proximity networking in addition to control and data
transfer among networked devices[6]. It was originally
developed by Microsoft, and now is being upgraded by
UPnP forum. The UPnP forum defines and publishes
UPnP device and service control protocols built upon open,
Internet-based communication standards. The UPnP
forum is supported by more than 800 companies. Since the
major companies such as Microsoft, Intel, HP, Sony, and
Samsung Electronics leads the forum as the steering
committee members, the UPnP is getting power as a
device network architecture at home and office. Actually
the UPnP is also adopted as the base protocol of device
discovery and control in the home networked device
interoperability architecture of the DLNA(Digital Living
Network Alliance)[11]. The DLNA is a consortium of
CE(Consumer Electronics), mobile, and PC companies,
which is formerly called DHWG (Digital Home Working
Group). The DLNA is working on delivering an
interoperability framework among digital appliances on
the home network, such as digital TVs, digital set-top
boxes, mobile phones, PDAs, and PCs. The DLNA is
currently supported by more than 280 companies.

2.2 Components

The main components of the UPnP architecture are

Devices, Services, and Control Points. Fig. 2 shows the
basic relation among Device, Control Point, and Service.

Fig. 2. Basic relation among Device, Service and

Control Point.

A UPnP Device is an entity that provides Services. A

UPnP device is a container of services and nested devices.

A UPnP Device can contain zero or more Services. A
Service is a unit of functionality implemented by a Device.
A Service exposes actions and models its state with state
variables. A Control point is a service requester. A Control
Point in a UPnP network is a controller capable of
discovering and controlling other devices.

2.3 Protocol Stack

The UPnP architecture defines a base set of standards

and conventions for describing devices and the services
they provide. It is designed to bring easy-to-use, flexible,
standards-based connectivity to ad-hoc or unmanaged
networks. It provides the service oriented architecture,
which is the base of emerging Web service technology as
well. It uses standard protocols and web technologies such
as TCP/IP, UDP, SSDP, SOAP, GENA, HTTP and XML.
Fig. 3 shows the architecture of the protocol stack of the
UPnP.

UPnP Vendor Defined

UPnP Forum Working Committee Defined

UPnP Device Architecture Defined

HTTPMU
(Discovery)

HTTPU
(Discovery)

SOAP
(Control)

HTTP
(Description)

UDP TCP

SSDP GENA SSDP

IP

HTTP
GENA

(Events)

Fig. 3. The UPnP protocol stack.

Here the UPnP vendors, UPnP Forum Working
Committees and the UPnP Device Architecture document
define the highest layer protocols used to implement UPnP.
Based on the device architecture, the working committees
define information global to specific device types

Table 1. Caption of a sample table.

Steps Description

Addressing Control point and device get addresses

Discovery Control point finds interesting device

Description Control point learns about device capabilities

Control Control point invokes actions on device

Eventing Control point listens to state changes of device

Presentation Control point controls device or views device status
using HTML UI

54

The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)

2.4 UPnP Networking

The UPnP provides support for communication
between Control Points and Devices. On top of the open,
standard, Internet based protocols, the UPnP defines an
architecture to handle the networking operation. The
UPnP networking is accomplished through 6 steps:
Addressing, Discovery, Description, Control, Eventing,
and Presentation. Table 1 explains the 6 steps of the UPnP
networking.

3. Performance Comparison

3.1 TAO CORBA

CORBA is a middleware architecture of the Object
Management Group’s(OMGs) standard for language and
platform independent distributed computing. It supports
object oriented programming in distributed computing
environment[1]. CORBA is an acronym for Common
Object Request Broker Architecture. As its name means,
the object request broker(ORB) is the basic engine for this
architecture. The ORB, known as the object bus, is
responsible for locating server objects, and transporting
method invocations and results to and from the server.

TAO(The ACE ORB) is an open-source
high-performance, real-time CORBA ORB end system. It
was developed for distributed realtime and
embedded(DRE) systems by the TAO project[10]. So,
there was a case to apply TAO to robot development[4].
TAO is based on ACE[12] and extends CORBA by adding
realtime I/O subsystem and high speed network interface.
It allows applications to manage various resources such as
communication and memory resources. It also provides a
run-time scheduler to enforce QoS property. It adopts and
provides many services of realtime OSes.

3.2 Comparison of Response Time

When the UPnP architecture is applied to software
components, each software component can be mapped to a
Control Point or a Device. Since a complex robot with
many functionalities would have as many software
components as the number of functionalities. As the
number of Devices and Control Points increases, there
could be a possibility of performance degradation since
the UPnP was not devised for software integration. So, we
implemented UPnP Devices and Control Points, and
checked the response time. At the same time, we also
implemented client and server components with the TAO
CORBA, and compare the response time. In the
experiment, we implemented dummy client(Control
Point) and server(Device) components. And we increased
the number of clients and server components from 10 to 80
each, and measured the response time.

In the first experiment, we located the devices and the
control points on a single computer. Figure 4 shows the
configuration of the experiment. The computer had a
Pentium 4, 1.7GHz CPU and 256MB memory. The
operating system was Redhat 9.0 with the kernel upgrade
to version 2.4.26. The clients were programmed to send a
dummy request every 50ms, and to measure and save the

response time. With increasing the number of client(and
server) from 10 to 80, we run the program for 20 min, and
analyzed the result. Figure 5 gives the result.

Fig. 4. The configuration of the single computer

experiment.

(a) (b)

Fig. 5. (a) Average response time and (b) standard
deviation for single computer experiment.

As can be seen in Fig. 5, the response time shows a little

change along the increase of the number of devices. The
average is almost 5ms for TAO CORBA and 2.4ms for
UPnP when the number of devices is 80. The standard
deviation is less than 2.5ms for TAO CORBA and 5.5ms
for UPnP. In the single computer experiment, the UPnP
showed better performance in average time and worse
performance in standard deviation than the TAO CORBA.

In the next experiment, we used two computers. We
located the clients on one computer, and the server
components on the other computer. The client computer
had a Pentium 4, 2.8GHz CPU and 512MB memory. The
operating system was Redhat 9.0 with the kernel upgrade
to version 2.4.26. Figure 6 shows the configuration of the
experiment.

Fig. 6. The configuration of the two computer

experiment.

We used the same client and server components as before,
and measured the response time as we increased the
number of client and server components. Figure 7 shows
the result.

55

The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)

(a) (b)

Fig. 7. (a) Average response time and (b) standard
deviation for single computer experiment.

In this case, the average is almost 4.5ms for TAO CORBA
and 4.7ms for UPnP when the number of devices is 80.
The standard deviation is less than 2.5ms for TAO
CORBA and 3ms for UPnP. The graph shows that the
performance of the UPnP is similar to that of the TAO
CORBA though it shows a little bit more standard
deviation. From the both of experiments, we could
conclude that there is no severe performance degradation
when the UPnP is used for software components, and that
the performance of UPnP is similar to that of TAO
CORBA.

4. UPnP and Ubiquitous Robot Control

Though the UPnP showed similar performance to the
TAO CORBA, it has better features for dynamic
distributed computing environment than CORBA. First of
all, the UPnP has automatic discovery and configuration
mechanism. In the UPnP community, it is called
zero-configuration. The Addressing, Discovery, and
Description of UPnP networking steps are related with
automatic discovery and configuration of Control Points
and Devices. It is the strong point that makes the UPnP to
be appropriate for dynamic computing environment.
Every time devices are connected to the network, there is
no need for users to configure the devices. Since
ubiquitous computing environments will be mostly based
on ad hoc networks that are spontaneous, completely
distributed, and dynamic, the UPnP is quite appropriate for
the environment.

In the view point of robots, automatic discovery and
configuration makes it easy to integrate software
components internally. The software components can
participate in integration dynamically. If there is a task
planner or an intelligence component, it can configure
other software components dynamically according to the
goal of services it wants to provide. This point would be
essential for implementation of intelligence. The
intelligence component can reside even outside of a robot
since software components can cooperate with each other
regardless of the location. In this case, the network
connection could not be permanent, and the robot should
work on the ad hoc network. It makes the UPnP
technology to be more attractive since it was designed for
dynamic computing environment.

In the recent concept of the URC(Ubiquitous Robotic
Companion), some software components are located
outside of robots. In this way, the price of robot can go
down, and various services can be provided. The outside

software components can be an intelligence component or
service components that provide desired services by
cooperating with the software components inside the robot.
By the way, this URC configuration of robots is what the
UPnP is quite appropriate for.

Software components can be located in any of internal
environment of robot or ubiquitous computing
environment, and they can be configured dynamically.
Then, internal software integration of robot and software
configuration for services in the URC concept are the same
thing. Thus, it would be better to have a unified framework
for it. The UPnP architecture is a good candidate for it.
Figure 8 shows an example of the configuration with the
UPnP technology. Each small block represents a software
component, and it is mapped to a UPnP Control Point or a
Device or a combination of them. The ‘internal robot
environment’ means inside of the robot. The figure shows
the software integration can be done regardless of the
location of software components. The integration
framework is unified. In this way, internal software
components of robot can be controlled directly from
outside, too.

Fig. 8. An example configuration with the UPnP

technology in ubiquitous computing
environment.

Another good feature of the UPnP is that it has

‘Presentation’ step. Each UPnP Device can have a web
page, and can use it freely. It can help to build user
interface. If we develop a software component so that it
has a web page with user interface for its services, then
users can access the software component through the
internet, and control it. In other way, the web page can be
used to check the status of the component. Users or other
high level software component can check the healthiness
of the component through the web page. Though the UPnP
limits the operation within a network segment, the
‘Presentation’ mechanism provides a way to circumvent
the limitation. The figure 8 shows this concept with
‘remote user interface component.’

5. Experiments

In the first experiment, we built a Lego robot with a
camera on it. The goal of robot control is to make the robot
to follow a marker. In more detail, we wanted to make the
robot to maintain the direction and the distance to the

56

The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)

marker within some ranges. For instance, if the marker
goes out of the camera view to the right, the robot should
turn right to the marker, and vice versa. If the marker
moves far away from the robot, the robot should move
toward the marker so that it can maintain the size of the
marker in the camera image in a certain range. If the
marker moves toward the robot, the robot should move
away from the marker. We used Lego RCX controller to
build the robot. We assigned a computer to control the
motion of the Lego robot. We called it ‘Main computer.’
The Lego RCX could be controlled using IR(Infra red)
signal. The Lego tower was USB-to-IR signal converter,
and it was connected to the computer. We mounted a 1394
camera on the robot. We also assigned another computer
to the camera for image processing. We called it ‘Vision
computer.’ Firstly, we implemented 3 software
components: Motor control, Vision tracker, and Planner.
The Motor control component controlled the motion of the
Lego robot. The Vision tracker tracked the marker, and
generated the direction that the robot had to move to. The
Planner issued start and stop commands. Though its name
was planner, it did not make any plan, rather its role was
user interface. Later, we added Video renderer and UPnP
AV components to see the camera view on the computer.
Figure 9 shows the architecture of the system with the
software components. Each component was developed as
a UPnP component. For instance, the planner was a
Control Point while the vision tracker and the motor
control were combinations of Control Point and UPnP
Device.

Fig. 9. The architecture of the Lego robot control

system.

The robot worked quite well, and followed the marker.

Though the camera was attached to the Lego robot
physically, they could be separated. The software
components were separated, too. But, they cooperated
with each other very well though they were located on
different computer. While implementing the software
components, we felt that the integration was so simple and
easy. The only thing we had to do was to wrap our
programs with UPnP protocol stack and to place them on
the computers. The UPnP wrapping was composed of
defining services and combining action code with UPnP
protocol code. It was easy, too.

In the second experiment, we developed a ‘Robot
Hello’ program with UPnP components, and checked the

usefulness of UPnP and possibility of ubiquitous robot
control. The testbed robot consisted of 3 single board
computers(SBC) in hardware, and they were connected
each other with networks. The SBC’s were based on Linux
and adopted a realtime OS such as RTAI[13]. Figure 10
shows the appearance of the robot.

Fig. 10. The appearance of the testbed robot.

The goal of the Robot Hello program was to let a robot

show a greeting expression to a man in front of it. The
robot was supposed to move forward a little, to make a
bow, to say hello, and to display ‘Hello’ characters on the
display. The Robot Hello program was designed to have 5
software components. Each component was programmed
to be UPnP Device or Control Point with our UPnP based
robot middleware SDK. Figure 11 shows the relation of
the UPnP components for Robot Hello program.

Fig. 11. The relation of UPnP components for the Robot

Hello program.

The figure shows 6 components including the task
manager component, and the relation between them. The
‘Robot Head’, ‘Robot Motion’, ‘Robot Voice’, ‘Robot
GTK Hello’ components were programmed into UPnP
Devices. The ‘Robot Head’ component controlled the
motion of robot head. The ‘Robot Motion’ component
controlled the movement of robot. The ‘Robot Voice’
component generated ‘Hello’ sound using voice synthesis
when it received a command. The ‘Robot GTK Hello’

57

The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)

component was supposed to display ‘Hello’ characters on
the display of the robot body. The ‘Robot Greeting’
component was transformed into the combination of UPnP
Device and Control Point. We let the ‘Robot Greeting’
component include 4 Control Points inside it. The ‘Robot
Greeting’ component acted as UPnP Device to a task
manager. When we tested the program, we could find that
the new UPnP-based Robot Hello components worked
together without any problem. In addition, we tested the
situation of dynamic computing environment by tearing
down and reloading software components in realtime. In
this experiment, dynamic tearing down and reloading of
UPnP components did not cause any problem and showed
smooth work. For example, if we unloaded the ‘Robot
Head’ component, the program worked well without it. If
we reloaded it again, the program detected it and worked
well including head motion. Figure 12 shows two shots of
the experiment. Figure 12(a) shows the installed the UPnP
components. Figure 12(b) shows the robot was displaying
the ‘Hello’ word on the front panel.

(a) (b)

Fig. 12. Experimentation with the testbed robot, (a) user
interface that shows the S/W components in the
robot (b) the robot displaying ‘Hello’ on its
display panel.

In the experiment, we located the ‘Task Manager’
component outside the robot. We used another computer
to run it, and let the computer communicate with the robot
by wireless LAN. It did not pose any problem. We used a
user interface program as the ‘Task Manager’. Figure
12(b) is the screen shot of the user interface. With the user
interface program, we could not only control the robot, but
access other services of internal robot components such as
‘Robot Head’ and ‘Robot Motion’ as can be noticed in Fig.
12(a). So, we could see the possibility of UPnP as a unified
framework for both of robot internal environment and
ubiquitous computing environment with robots.

6. Conclusion

Ubiquitous computing environment will be mostly
based on ad hoc networks that are spontaneous,
completely distributed, and dynamic. Robots will be
deployed like a TV or a refrigerator at home or at office in
the ubiquitous computing environment. In the recent
concept of the URC(Ubiquitous Robotic Companion),
some software components are located outside of robots.
Robots are supposed to cooperate with outside
components to provide desired services.

By the way, in our view, internal computing
environment of robots should be distributed and dynamic
in order to achieve intelligent behavior. A robot will need

to configure software components dynamically according
to its goal. So, we need appropriate middleware and
framework for efficient internal and external integration of
software components of robots.

In this paper, we have showed that the UPnP
technology could provide a unified framework for it. The
UPnP defines an architecture for pervasive peer-to-peer
network connectivity of intelligent appliances. While the
UPnP showed similar performance as the CORBA, it had
good features such as automatic discovery and
configuration for dynamic distributed computing
environment. Using the UPnP technology, we could
access and control software components uniformly
regardless of location. It was good for handling dynamic
change of software configuration, too. While the UPnP is
getting more power as a good candidate for middleware of
home and office network, the UPnP is a good candidate for
a unified framework for future robots, too.

References

[1] CORBA, www.omg.org
[2] H. Hirukawa, F. Kanehiro and S. Kajita, “OpenHRP:

Open Architecture Humanoid Robotics Platform,”
Int’l Symp. Robotics Research, 2001.

[3] E. Li, D. Chen, H. I. Christensen and A. Oreback, "An
Architecture for Indoor Navigation," Int’l conf. on
Robotics and Automation, vol. 2, pp. 1783-1788, April,
2004.

[4] H. Utz, S. Sablatnog, S. Enderle and G. Kraetzschmar,
“Miro – Middleware for Mobile Robot Applications,”
IEEE Tr. on. Robotics and Automation, vol. 18, no. 4,
pp. 493-497. August, 2002.

[5] Sang Chul Ahn, Jin Hak Kim, Kiwoong Lim, Heedong
Ko, Yong-Moo Kwon, and Hyoung-Gon Kim, "UPnP
Approach for Robot Middleware," ICRA 2005, Apr.
2005.

[6] UPnP, www.upnp.org
[7] Web Services, www.w3.org/2002/ws
[8] S. Ilango Kumaran, Jini Technology: An Overview,

Prentice Hall, 2002, p.307.
[9] Young-Guk Ha, Joo-Chan Sohn, Young-Jo Cho, and

Hyunsoo Yoon, “Towards a Ubiquitous Robotic
Companion: Design and Implementation of
Ubiquitous Robotic Service Framework,” ETRI
Journal, vol. 27, no. 6, pp.666-676, Dec. 2005.

[10] TAO, www.cs.wustl.edu/~schmidt/TAO.html
[11] DLNA, www.dlna.org
[12] ACE, www.cs.wustl.edu/~schmidt/ACE.html
[13] RTAI, Realtime Application Interface, www.aero.

polimi.it/~rtai/

58

	Main
	Foreword
	Committee Members
	Table of contents
	Plenary Talk
	COGNITIVE ROBOT COMPANIONS FOR SMART ENVIRONMENTS
	How deep can machines feel the human body?

	Invited Talk
	Dynamic Model of an Aritificial Muscle Actuator for Biomimetic Underwater Propulsor Applications
	Steps Toward an Ecology of Physically Embedded Intelligent Systems
	Robust Real-Time Vision Modules for a Personal Service Robot
	Earthbound Robotic Astrobiology: First Experiments

	Oral Session
	MA1 : Humanoid Robots
	MA1-1 Biomimetic Landing Controller for Articulated Hopping Robot
	MA1-2 Adaptation in Bipedal Locomotion Using Phase Oscillator Networks
	MA1-3 A study of Design for Quadruped Walking Robot Based on Biologically Inspired Approach
	MA1-4 Learning Locomotion: Control of a quadruped over rough terrain
	MA1-5 Analytical Walking Pattern Generation Method for Humanoid Robots using Cubic Polynomials
	MA1-6 Feasibility of Humanoid Application for Wheelchair User Support

	MA2 : Network-based Robotics
	MA2-1 Robotic Sensor Deployment for Sensor Network Construction Using Power Models of Multi-robots
	MA2-2 A Controller Design of a Tethered-Robot Guiding System
	MA2-3 Ubiquitous environment provides services for Network-based humanoids using a flexible distributed framework
	MA2-4 UPnP Robot Middleware for Ubiquitous Robot Control
	MA2-5 Heterogeneous Network Middleware for a Personal Robot
	MA2-6 Orientation Estimation of a Mobile Robot with a Single Ultrasonic Receiver in RFID Sensor Space

	MP1 : Actuators
	MP1-1 (Invited) Dynamic Model of an Aritificial Muscle Actuator for Biomimetic Underwater Propulsor Applications
	MP1-2 A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency
	MP1-3 Electro-active paper actuators for bio-robot application: Electric field frequency
	MP1-4 Simulation of Spring Characteristic of A New Stacked-type Electrostatic Actuator
	MP1-5 A Biomimetic Flapping System Actuated by Lightweight Piezo-Composite Actuator

	MP2 : Environment Modeling
	MP2-1 (Invited) Steps Toward an Ecology of Physically Embedded Intelligent Systems
	MP2-2 Preliminary Study on the Environment Map for Mobile Robots
	MP2-3 A novel map building solution under deficiencies of the 2D-laser range finder
	MP2-4 Robot Town Project: Supporting Robots in an Environment with Its Structured Information
	MP2-5 Environment data collection and its use for robot teleoperation

	ME1 : Vision
	ME1-1 (Invited) Robust Real-Time Vision Modules for a Personal Service Robot
	ME1-2 Adaptive Background Mixture Model in Improved HLS Color Space?
	ME1-3 User Adaptation in Korean Sign Language Recognition
	ME1-4 Automatic Facial Feature Localization by Elastic Bunch Graph Matching with Optimized Gabor Parameters
	ME1-5 Multi-Functional Robot with Distributed Module based on Ubiquitous Robotics

	ME2 : Ubiquitous Space
	ME2-1 RSS Based Routing Enhancement in Ad Hoc Sensor Networks
	ME2-2 Dynamic Integration of Ubiquitous Robotic Systems using Ontologies and the RT Middleware
	ME2-3 Development of Ubiquitous Robotic Space for Networked Robot
	ME2-4 Automated Integration of Service Robots into Ubiquitous Environments
	ME2-5 Efficient Monitoring by Robot and Intelligent Tag Collaboration
	ME2-6 Wireless Localization Network for a Ubiquitous Robotic Space: Background and Concept

	TA1 : Human-Robot Interaction
	TA1-1 Human-Robot Interaction based on Context Awareness considering Various Situation
	TA1-2 Research on Virtual URS and Its Service on Mobile Phone
	TA1-3 A Human-Robot Emotional Interaction Experiment through an OX Quiz Game between Human and Robot
	TA1-4 Human Modeling for Human Behavior Recognition
	TA1-5 Age Classification for Home-Robot Services
	TA1-6 Impedance Learning Strategy for Open-Door Task

	TA2 : Sensors for Navigation
	TA2-1 RFID Based Target Acquisition and Docking System for Indoor Mobile Robots
	TA2-3 Applying the RFID Technology for the u-RT Space with Ambient Intelligence
	TA2-4 Implementation of Autonomous Navigation System based on Open System Architecture
	TA2-5 Filtering out Specular Reflections of Sonar Sensor Readings
	TA2-6 Tracking and Counting Humans with Multiple Laser Range Scanners

	TP1 : Intelligence and Learning
	TP1-2 Context Knowledge Management in Pervasive Computing
	TP1-3 Ontology-based User Context Modeling for Ubiquitous Robots
	TP1-4 Design of a Probabilistic Fuzzy Rule-based Learning System for Effective Intention Reading in Human-Machine Interaction
	TP1-5 Effect of Variable Initial State Error in Average Operator-based Iterative Learning Control
	TP1-6 CCSLR - a Common Command-Scripting Language for network-based Robots

	TP2 : Robotic Mechanisms and Design
	TP2-1 (Invited) Earthbound Robotic Astrobiology: First Experiments
	TP2-2 Isotropic Configurations of a Caster Wheeled Mobile Robot with Steering Link Offset Different from Wheel Radius
	TP2-3 Biologically Inspired Locomotion Strategies: Novel Ground Mobile Robots at RoMeLa
	TP2-4 Operation of a Mobile Robot by Steering a Rope
	TP2-5 A Dual-Flight Mode MAV for Search and Rescue in Near-Earth Environments

	TE1 : Navigation Algorithms
	TE1-1 Collision-free Path Planning for a Car Parking Problem
	TE1-2 Experimental Results on the Performance of the Practical Path
	TE1-3 A novel path planning method considering crowdedness
	TE1-4 Mobile Robot Path Planner for Environment Exploration
	TE1-5 Bearing-only SLAM using SIFT-based Object Recognition in Indoor Environments

	Poster Session
	P01 : Poster (Sound, Vision, Sensors and Actuators, Humanoid Robots)
	PO1-1 Multimodal Sound Source Localization for Intelligent Service Robot
	PO1-2 Sound Source Localization Using Dual Microphones Array
	PO1-3 Text-Independent Speaker Recognition for Ubiquitous Robot Companion
	PO1-4 Mean Shift Based Object Tracking with New Feature Representation
	PO1-5 Human Following Based on Fuzzy Theory using Single Camera
	PO1-6 Ridge Regressive Bilinear Model for Robust Face Recognition
	PO1-7 A novel technique for sky and ground segmentation in natural images
	PO1-8 Development of Polymer-based Flexible Tactile Sensing Module Integrated with Sensing Elements and Pluggable Terminals Con
	PO1-9 CMOS based silicon tactile senor array for finger-mounted applications
	PO1-10 Development of Ultrasonic Sensors with Asymmetric Beam Directivity for a Mobile Robot
	PO1-11 Estimation of Angular Velocity by Using Low-cost Acceleration Sensor
	PO1-13 Behavior Management for Humanoid Robot under Divided Attention
	PO1-14 Robot Personality from Perceptual Behavior Engine : An Experimental Study

	P02 : Poster (Navigation, HRI, Intelligence and learning)
	PO2-1 Exploiting the visibility information toward dependable navigation
	PO2-2 Error Detection and Recovery Framework for Dependable Navigation
	PO2-3 Sonar Map Construction for a Mobile Robot Using a Tethered-Robot Guiding System
	PO2-4 Mobile Robot Global Localization Based on Object Entity with Stereo Camera
	PO2-5 Improved active beacon system using Multi-Modulation and Unscented Kalman Filter for Indoor Localization
	PO2-6 Localization Method with 2 Beacons for Intelligent Robot
	PO2-7 An Embedded Localization Sensor Based on IR Landmark for Indoor Mobile Robot
	PO2-8 Recognizing Human Touching Behaviors using Neural Networks in Human-Robot Interaction
	PO2-9 Multiview Head Tracking for a Specific Person on the Mobile Robot
	PO2-10 The Design of a Multi-domain Dialogue System Based on a Form-based Model and Statistical Classification Techniques
	PO2-11 Design of Robot Knowledge Management System: OWL-aware Relational Model Approach
	PO2-12 An Interactive Approach and Implementation for Multi-agent Motion Planning
	PO2-13 A Tethering System Design for Mobile Robot
	PO2-14 Robust Impedance Control using Disturbance Observer for Robot Manpulator

	Search This CD-Rom
	CD-ROM Help
	Exit

